Medical audio classification remains challenging due to low signal-to-noise ratios, subtle discriminative features, and substantial intra-class variability, often compounded by class imbalance and limited training data. Synthetic data augmentation has been proposed as a potential strategy to mitigate these constraints; however, prior studies report inconsistent methodological approaches and mixed empirical results. In this preliminary study, we explore the impact of synthetic augmentation on respiratory sound classification using a baseline deep convolutional neural network trained on a moderately imbalanced dataset (73%:27%). Three generative augmentation strategies (variational autoencoders, generative adversarial networks, and diffusion models) were assessed under controlled experimental conditions. The baseline model without augmentation achieved an F1-score of 0.645. Across individual augmentation strategies, performance gains were not observed, with several configurations demonstrating neutral or degraded classification performance. Only an ensemble of augmented models yielded a modest improvement in F1-score (0.664). These findings suggest that, for medical audio classification, synthetic augmentation may not consistently enhance performance when applied to a standard CNN classifier. Future work should focus on delineating task-specific data characteristics, model-augmentation compatibility, and evaluation frameworks necessary for synthetic augmentation to be effective in medical audio applications.
Detecting rare and diverse anomalies in highly imbalanced datasets-such as Advanced Persistent Threats (APTs) in cybersecurity-remains a fundamental challenge for machine learning systems. Active learning offers a promising direction by strategically querying an oracle to minimize labeling effort, yet conventional approaches often fail to exploit the intrinsic geometric structure of the feature space for model refinement. In this paper, we introduce SDA2E, a Sparse Dual Adversarial Attention-based AutoEncoder designed to learn compact and discriminative latent representations from imbalanced, high-dimensional data. We further propose a similarity-guided active learning framework that integrates three novel strategies to refine decision boundaries efficiently: mormal-like expansion, which enriches the training set with points similar to labeled normals to improve reconstruction fidelity; anomaly-like prioritization, which boosts ranking accuracy by focusing on points resembling known anomalies; and a hybrid strategy that combines both for balanced model refinement and ranking. A key component of our framework is a new similarity measure, Normalized Matching 1s (SIM_NM1), tailored for sparse binary embeddings. We evaluate SDA2E extensively across 52 imbalanced datasets, including multiple DARPA Transparent Computing scenarios, and benchmark it against 15 state-of-the-art anomaly detection methods. Results demonstrate that SDA2E consistently achieves superior ranking performance (nDCG up to 1.0 in several cases) while reducing the required labeled data by up to 80% compared to passive training. Statistical tests confirm the significance of these improvements. Our work establishes a robust, efficient, and statistically validated framework for anomaly detection that is particularly suited to cybersecurity applications such as APT detection.
Foundation models, despite their robust zero-shot capabilities, remain vulnerable to spurious correlations and 'Clever Hans' strategies. Existing mitigation methods often rely on unavailable group labels or computationally expensive gradient-based adversarial optimization. To address these limitations, we propose Visual Disentangled Diffusion Autoencoders (DiDAE), a novel framework integrating frozen foundation models with disentangled dictionary learning for efficient, gradient-free counterfactual generation directly for the foundation model. DiDAE first edits foundation model embeddings in interpretable disentangled directions of the disentangled dictionary and then decodes them via a diffusion autoencoder. This allows the generation of multiple diverse, disentangled counterfactuals for each factual, much faster than existing baselines, which generate single entangled counterfactuals. When paired with Counterfactual Knowledge Distillation, DiDAE-CFKD achieves state-of-the-art performance in mitigating shortcut learning, improving downstream performance on unbalanced datasets.
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
Current approaches to reducing undesired capabilities in language models are largely post hoc, and can thus be easily bypassed by adversaries. A natural alternative is to shape capabilities during pretraining itself. On the proxy task of removing medical capabilities, we show that the simple intervention of filtering pretraining data is highly effective, robust, and inexpensive at scale. Inspired by work on data attribution, we show that filtering tokens is more effective than filtering documents, achieving the same hit to undesired capabilities at a lower cost to benign ones. Training models spanning two orders of magnitude, we then demonstrate that filtering gets more effective with scale: for our largest models, token filtering leads to a 7000x compute slowdown on the forget domain. We also show that models trained with token filtering can still be aligned on the forget domain. Along the way, we introduce a methodology for labeling tokens with sparse autoencoders and distilling cheap, high-quality classifiers. We also demonstrate that filtering can be robust to noisy labels with sufficient pretraining compute.
As large language models (LLMs) are trained on increasingly opaque corpora, membership inference attacks (MIAs) have been proposed to audit whether copyrighted texts were used during training, despite growing concerns about their reliability under realistic conditions. We ask whether MIAs can serve as admissible evidence in adversarial copyright disputes where an accused model developer may obfuscate training data while preserving semantic content, and formalize this setting through a judge-prosecutor-accused communication protocol. To test robustness under this protocol, we introduce SAGE (Structure-Aware SAE-Guided Extraction), a paraphrasing framework guided by Sparse Autoencoders (SAEs) that rewrites training data to alter lexical structure while preserving semantic content and downstream utility. Our experiments show that state-of-the-art MIAs degrade when models are fine-tuned on SAGE-generated paraphrases, indicating that their signals are not robust to semantics-preserving transformations. While some leakage remains in certain fine-tuning regimes, these results suggest that MIAs are brittle in adversarial settings and insufficient, on their own, as a standalone mechanism for copyright auditing of LLMs.
Quantum generative modeling is a very active area of research in looking for practical advantage in data analysis. Quantum generative adversarial networks (QGANs) are leading candidates for quantum generative modeling and have been applied to diverse areas, from high-energy physics to image generation. The latent style-based QGAN, relying on a classical variational autoencoder to encode the input data into a latent space and then using a style-based QGAN for data generation has been proven to be efficient for image generation or drug design, hinting at the use of far less trainable parameters than their classical counterpart to achieve comparable performance, however this advantage has never been systematically studied. We present in this work the first comprehensive experimental analysis of this advantage of QGANS applied to SAT4 image generation, obtaining an exponential advantage in capacity scaling for a quantum generator in the hybrid latent style-based QGAN architecture. Careful tuning of the autoencoder is crucial to obtain stable, reliable results. Once this tuning is performed and defining training optimality as when the training is stable and the FID score is low and stable as well, the optimal capacity (or number of trainable parameters) of the classical discriminator scales exponentially with respect to the capacity of the quantum generator, and the same is true for the capacity of the classical generator. This hints toward a type of quantum advantage for quantum generative modeling.
Synthetic financial data provides a practical solution to the privacy, accessibility, and reproducibility challenges that often constrain empirical research in quantitative finance. This paper investigates the use of deep generative models, specifically Time-series Generative Adversarial Networks (TimeGAN) and Variational Autoencoders (VAEs) to generate realistic synthetic financial return series for portfolio construction and risk modeling applications. Using historical daily returns from the S and P 500 as a benchmark, we generate synthetic datasets under comparable market conditions and evaluate them using statistical similarity metrics, temporal structure tests, and downstream financial tasks. The study shows that TimeGAN produces synthetic data with distributional shapes, volatility patterns, and autocorrelation behaviour that are close to those observed in real returns. When applied to mean--variance portfolio optimization, the resulting synthetic datasets lead to portfolio weights, Sharpe ratios, and risk levels that remain close to those obtained from real data. The VAE provides more stable training but tends to smooth extreme market movements, which affects risk estimation. Finally, the analysis supports the use of synthetic datasets as substitutes for real financial data in portfolio analysis and risk simulation, particularly when models are able to capture temporal dynamics. Synthetic data therefore provides a privacy-preserving, cost-effective, and reproducible tool for financial experimentation and model development.




Video generation has seen remarkable progresses thanks to advancements in generative deep learning. Generated videos should not only display coherent and continuous movement but also meaningful movement in successions of scenes. Generating models such as Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs) and more recently Diffusion Networks have been used for generating short video sequences, usually of up to 16 frames. In this paper, we first propose a new type of video generator by enabling adversarial-based unconditional video generators with a variational encoder, akin to a VAE-GAN hybrid structure, in order to enable the generation process with inference capabilities. The proposed model, as in other video deep learning-based processing frameworks, incorporates two processing branches, one for content and another for movement. However, existing models struggle with the temporal scaling of the generated videos. In classical approaches when aiming to increase the generated video length, the resulting video quality degrades, particularly when considering generating significantly long sequences. To overcome this limitation, our research study extends the initially proposed VAE-GAN video generation model by employing a novel, memory-efficient approach to generate long videos composed of hundreds or thousands of frames ensuring their temporal continuity, consistency and dynamics. Our approach leverages a Markov chain framework with a recall mechanism, with each state representing a VAE-GAN short-length video generator. This setup allows for the sequential connection of generated video sub-sequences, enabling temporal dependencies, resulting in meaningful long video sequences.




Data scarcity and confidentiality in finance often impede model development and robust testing. This paper presents a unified multi-criteria evaluation framework for synthetic financial data and applies it to three representative generative paradigms: the statistical ARIMA-GARCH baseline, Variational Autoencoders (VAEs), and Time-series Generative Adversarial Networks (TimeGAN). Using historical S and P 500 daily data, we evaluate fidelity (Maximum Mean Discrepancy, MMD), temporal structure (autocorrelation and volatility clustering), and practical utility in downstream tasks, specifically mean-variance portfolio optimization and volatility forecasting. Empirical results indicate that ARIMA-GARCH captures linear trends and conditional volatility but fails to reproduce nonlinear dynamics; VAEs produce smooth trajectories that underestimate extreme events; and TimeGAN achieves the best trade-off between realism and temporal coherence (e.g., TimeGAN attained the lowest MMD: 1.84e-3, average over 5 seeds). Finally, we articulate practical guidelines for selecting generative models according to application needs and computational constraints. Our unified evaluation protocol and reproducible codebase aim to standardize benchmarking in synthetic financial data research.